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Single domain proteins can fold in vitro at rates in excess of
1 x 10* s 1.7 Measurement of folding rates of this magnitude
poses a considerable technical challenge. DyndhhidMR line

shape analysis has been successfully applied to study the folding

of several proteins on this time scalé. However, significant
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Figure 1. Molscript° diagram of the structure of the peripheral subunit
binding domain prepared from the Brookhaven Protein Data Bank file,
2PDD. The position of the Ala 1®N isotope label is shown as a sphere,
and the N-terminus is indicated.

the first helix. PSBD has been shown by thermodynamic
measurements to fold by a two-state mechanism with a melting
temperature of 52C andAG®° of 2.0 kcal/mol at 25C.*® Folding

and unfolding rates have been determined by dynamic NMR line
shape analysis between 41 and°®4in D,O at pD 8.0; however,
folding kinetics at lower temperatures are not accessible by line
shape analysis.

Off-resonancéN Ry, relaxation rate constants were measured
using the method developed by Akke and co-workersodified

populations of both folded and unfolded protein species must be 1 incorporate adiabatic pulses and gradient coherence selec-

present under suitable experimental conditions for line shape iy, 1213 Briefly

analysis to be utilized. In addition, this method also relies on the
observation of well-resolvetH resonances in the one-dimensional
NMR spectrum. This contribution describes the application of
off-resonance'®>N rotating frame relaxation measurements to
protein folding studies. The rotating frame relaxation rate constant,
Ry, is significantly affected by chemical exchange between folded

and unfolded states even if the population of either state is very
low; consequently, this technique allows characterization of .

folding kinetics under otherwise inaccessible conditions. *PRe
labeling also overcomes the requirement for resoltédeso-
nances.

The method was applied to a small helical protein, the
peripheral subunit-binding domain (PSBD) of the dihydrolopo-

amide acetyltransferase component of the pyruvate dehydrogenas

multienzyme complex fronBacillus stearothermophilusThe
structure of this 41-residue protein is illustrated in FigufeThe

protein was prepared by solid-phase synthesis, as previously

described, and was specifically labeled withN at Ala 11 in

Ry, is measured fofN magnetization spin-
locked along the direction of the effective field in the off-
resonance rotating frame. For fast chemical exchange, the
relaxation rate constanR is given by*!

R = Ry /sinf 6 — R’ — Ryftarf 0 = @k /(.2 + o)
1

in which R is the spinr-spin relaxation rate constant in the
absence of chemical exchange effed®s;is the spin-lattice
relaxation rate constang; is the tilt angle between the direction
of the reduced static field\w = o — wq, and the effective field,
we = (wi? + AwdY% wq is the population average Larmor
frequencyw andw, are the frequency and amplitude of the spin-
locking radio frequency field, respectivelex = prpudw?; pe
andpy are the fractions of folded and unfolded conformations,
respectivelypw is the change in th®N chemical shift between
folded and unfolded conformationsy = ke + ky is the exchange
rate constant; ankk andky are the rate constants for folding and
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In the present applicatiom; was held constant, and, was
varied by changindAw. Values of ®., and kex were obtained
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Table 1. Off-Resonancé®N R,, Measurements of Folding of PSBD

T(°C) On (ppm) pu Doy (LPS?) kex (LO*s7Y) ow (ppm) ke (10°s™9) ky (10°s™)
31 119.1 0.054 0.008 3.3%+0.01 22+ 04 6.6+ 0.5 2.1+ 0.3 1.3+ 0.3
40 119.7 0.15@: 0.006 9.82+ 0.87 3.9+0.8 7.2+£0.4 3.3+ 0.7 58+ 1.2
50 121.5 0.42@: 0.007 19.9£ 1.9 41+1.0 7.5+ 0.1 2.4+ 0.6 17.1£ 4.1
Ao = —172+ 5 ppm is the'®N chemical shift anisotropyR,[X] 03— T T T

= (3% — 1)/2, andp = 18.5+ 2.8 is the angle between the
N—H bond vector and symmetry axis of th& chemical shift

tensor!>17 R, and, 57, were measured using published meth- = 0.2
ods!#41%18Systematic errors in determinirig® from 7y, due to =,
contributions from the unfolded state have only a small effect «’

= 0.1

on the fitted parameters becausg ppproaches 0 at low
temperature anBe, > Ry at high temperature. The valuesmf
andpy were measured from equilibrium temperature denaturation

\\
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experiments monitored by CD spectroscépy. ool b L b
Figure 2 shows;, dispersion curves obtained at temperatures 0 0.5 , 1 . 1.5 2
of 31, 40, and 50C. Values ofR; andR.? are given in the caption © " (10°s™)
to Figure 2. The values d&,° vary linearly withy/T, in whichy Figure 2. 15N Re, data for Ala 11 obtained at eight effective field

is_the viscosity of wate_r. The rotz_nltional correlation time deter- strengths at 31C (O), 40°C (a), and 50°C (v). The values ofs; were

mined from theR,%/R; ratio at 31°C is 2.82+ 0.02 ns and agrees 2.7+ 0.1, 2.6+ 0.1, and 2.6+ 0.1 kHz at 31, 40, and 5T, respectively.

well with an estimate of 2.7 ns derived from the bUlldUp Curve The values of offsetAw/27, were 1.4, 2.1, 2.8, 3.5, 4.2, 5.1, 5.6, and

for the IHN—!HN NOE cross-peak between Tyr 10 and Ala 11. 6.4 kHz; a duplicate set was obtained fow/27 = 3.5 kHz. At 31°C,

Fitted exchange parameters are given in Table 1. The values ofuncertainties irRex obtained aw/27r = 5.6 and 6.4 kHz were-25%,

pu and dw predict that the population-averaged isotropibl and data for these points were not included in the analysis. Valugs of

chemical shifts at 40 and 5T will differ from the shift at 31 were measured to be 2.140.02, 2.09+ 0.06, and 1.64t 0.15 st at

°C by 0.69+ 0.14 and 2.72+ 0.13 ppm, respectively. These 31, 40, and 50°C, respectively. Values dR,° obtained fromyy, were

estimates are in good agreement with the observed shifts (Table4.04 £ 0.22, 3.48+ 0.21, and 2.33t 0.35 s* at 31, 40, and 50C,

1). respectively. The best least-squares fitted line is drawn for each data set.
To confirm the present results, the chemical exchange rate Values ofke = (b/m)Z and de, = (M)~ in whichm andb are the

constant also was estimated by line shape analysis of the resolvec!oPe and intercept of the fitted lines, are reported in Table 1. Uncertainty

ring current shifted methyH resonances of V16 and V21 using estimates were obtained by Monte Carlo and jackknife simulafibf?s.

methods described previoudlybut under the same solution € Sample was 3 mM PSBD (90%/10%GiD;0, pH = 5.4). NMR

conditions as foR,, measurements. At 50C, the value ok, = spectra were reporded on Bruker DR)_(GOO and Varian INOVA spec-

18x 10t st differps from the results of th&, method by less tromete'rs operating &H Larmor frequencies c_>f 600.13 :?md 599.73 MHz,

than a singldn unit, which is smaller than thep uncertainty of the respectively. Sample temperatures were calibrated using a 100% ethylene

. . lycol standard.

line shape analysisThe excellent agreement both validates the gyctc;‘ sdanlar leviates th df Nt

N Ry, methodology and provides further evidence for the two- method aiso a ?;na es the need for reso resonances.
state folding of PSBD. Below 4XC, the population of the Applied to fully .N-Iabe!ed proteins, the techmqug prowdesﬂ
denatured state is too low to perm,it line shape anafysis: means to determine folding rate constants on a residue-specific

© 1o . .
contrast,’N R;, measurements conducted at 31 allow the ?asils.f tﬁhet resutltst OI ‘T‘(;‘.Ch experzlmgnts serve as an additional
determination of the folding rate even though~ 6%. est ot the two-state Tolding mechanism.
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